Inmunidad en declive
Cómo el envejecimiento remodela la respuesta inmune adaptativa
DOI:
https://doi.org/10.35305/fcm.v4i.134Palabras clave:
Inmunosenescencia, Linfocitos, Inflamación crónica, Respuesta adaptativaResumen
El envejecimiento fisiológico del sistema inmune, conocido como inmunosenescencia, presenta características distintivas que afectan tanto al compartimiento linfoide como al mieloide. Estas alteraciones están estrechamente relacionadas con la aparición de diversas patologías crónicas asociadas a la edad, como cáncer y enfermedades neurodegenerativas, así como con una mayor susceptibilidad a patógenos y una respuesta disminuida a las vacunas. En esta revisión, nos centraremos en los cambios que experimentan los linfocitos T y B como consecuencia del envejecimiento del sistema inmunológico, dado que comprender estos procesos es fundamental para el estudio de la fisiopatología de múltiples afecciones crónicas y el desarrollo de estrategias terapéuticas destinadas a prevenir el envejecimiento prematuro del sistema inmune.
Descargas
Citas
Envejecimiento y salud. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/ageing-and-health
2. Passtoors WM, van den Akker EB, Deelen J, Maier AB, van der Breggen R, Jansen R, et al. IL7R gene expression network associates with human healthy ageing. Immunity and Agein. 2015; 12(1):1–9. https://doi.org/10.1186/s12979-015-0048-6.
3. Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev. 2014 Jul 1;139(1):49–57. https://doi.org/10.1016/j.mad.2014.06.005.
4. Reporte interactivo de estadísticas de salud | Argentina.gob. Disponible en: https://www.argentina.gob.ar/salud/deis/reporte-interactivo
5. Fu Z, Xu H, Yue L, Zheng W, Pan L, Gao F, et al. Immunosenescence and cancer: Opportunities and challenges. Medicine. 2023 Nov; 24;102(47):e36045. https://doi.org/10.1097/MD.0000000000036045.
6. Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. Journal of Hematology & Oncology. 2020 Nov 10;13(1):1–18. https://doi.org/10.1186/s13045-020-00986-z.
7. Boots AMH, Maier AB, Stinissen P, Masson P, Lories RJ, De Keyser F. The influence of ageing on the development and management of rheumatoid arthritis. Nature Reviews Rheumatology. 2013 Jun 18;9(10):604–13. https://doi.org/10.1038/nrrheum.2013.92.
8. Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer’s disease: insights from the hallmarks of ageing. Translational Neurodegeneration. 2024 Jan 23;13(1):1–32. https://doi.org/10.1186/s40035-024-00397-x.
9. Lau V, Ramer L, Tremblay MÈ. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nature Communications. 2023 Mar 25;14(1):1–16. https://doi.org/10.1038/s41467-023-37304-3.
10. Chen J, Deng JC, Goldstein DR. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol Med. 2022 Dec 1;28(12):1100. https://doi.org/10.1016/j.molmed.2022.09.008.
11. Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing. 2019 Dec;16(1):25. https://doi.org/10.1186/s12979-019-0164-9.
12. Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immunity & Ageing. 2021 Oct 9;18(1):1–18. https://doi.org/10.1186/s12979-021-00249-6.
13. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine. 2006 Feb 20;24(8):1159–69. https://doi.org/10.1016/j.vaccine.2005.08.105.
14. Saade E, Canaday DH, Davidson HE, Han LF, Gravenstein S. Special Considerations for Vaccines and the Elderly. Vaccinations. 2019 Jan 1;35–53. https://doi.org/10.1016/B978-0-323-55435-0.00003-3.
15. de Punder K, Heim C, Wadhwa PD, Entringer S. Stress and immunosenescence: the role of telomerase. Psychoneuroendocrinology. 2018 Mar 1;101:87. https://doi.org/10.1016/j.psyneuen.2018.10.019.
16. Armanios M. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest. 2013 Mar 1;123(3):996–1002. https://doi.org/10.1172/JCI66370.
17. Monickaraj F, Aravind S, Gokulakrishnan K, Sathishkumar C, Prabu P, Prabu D, et al. Accelerated aging as evidenced by increased telomere shortening and mitochondrial DNA depletion in patients with type 2 diabetes. Mol Cell Biochem. 2012 Jun 13;365(1–2):343–50. https://doi.org/10.1007/s11010-012-1276-0.
18. Barbouti A, Vasileiou PVS, Evangelou K, Vlasis KG, Papoudou-Bai A, Gorgoulis VG, et al. Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. Oxid Med Cell Longev. 2020;7986071. https://doi.org/10.1155/2020/7986071.
19. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2016; 3565127. https://doi.org/10.1155/2016/3565127.
20. Kaushik S, Tasset I, Arias E, Pampliega O, Wong E, Martinez-Vicente M, et al. Autophagy and the Hallmarks of Aging. Ageing Res Rev. 2021 Dec 1;72:101468. https://doi.org/10.1016/j.arr.2021.101468.
21. Labbadia J, Morimoto RI. The Biology of Proteostasis in Aging and Disease. Annu Rev Biochem. 2015 Jun 2;84:435. https://doi.org/10.1146/annurev-biochem-060614-033955.
22. Ahmed ASI, Sheng MH, Wasnik S, Baylink DJ, Lau KHW. Effect of aging on stem cells. 2017;7(1):1–10. https://doi.org/10.5493/wjem.v7.i1.1.
23. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.
24. Villar-Álvarez F, de la Rosa-Carrillo D, Fariñas-Guerrero F, Jiménez-Ruiz CA. Immunosenescence, Immune Fitness and Vaccination Schedule in the Adult Respiratory Patient. Open Respiratory Archives. 2022 Jul 1;4(3). https://doi.org/10.1016/j.opresp.2022.100181.
25. Sayed N, Huang Y, Nguyen K, Krejciova-Rajaniemi Z, Grawe AP, Gao T, et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging. 2021 Jul 1;1(7):598. https://doi.org/10.1038/s43587-021-00082-y.
26. Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduction and Targeted Therapy. 2023 May 13;8(1):1–16. https://doi.org/10.1038/s41392-023-01451-2.
27. Frasca D, DIaz A, Romero M, Garcia D, Blomberg BB. B Cell Immunosenescence. Annu Rev Cell Dev Biol. 2020 Oct 6;36:551. https://doi.org/10.1146/annurev-cellbio-011620-034148.
28. Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 2014;17(4):324–8. https://doi.org/10.1097/MCO.0000000000000065.
29. Ghosh K, Capell BC. The Senescence-Associated Secretory Phenotype: Critical Effector in Skin Cancer and Aging. J Invest Dermatol. 2016 Nov 1;136(11):2133. https://doi.org/10.1016/j.jid.2016.06.621.
30. Correia-Melo C, Hewitt G, Passos JF. Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence?. Longevity & Healthspan. 2014 Jan 3(1):1–9. https://doi.org/10.1186/2046-2395-3-1.
31. Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease. 2010 Feb 2;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.
32. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014 Jan 28(2):99–114. https://doi.org/10.1101/gad.235184.113.
33. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019 Oct 31;179(4):813–27. https://doi.org/10.1016/j.cell.2019.10.005.
34. Fainboim L, Geffner J. Introducción a la Inmunología Humana. 5 ed. 2005. p. 193–201.
35. Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone. 2019 Jun 1;123:265–73. https://doi.org/10.1016/j.bone.2019.03.041.
36. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell. 2017 Jun 1;20(6):771-784.e6. https://doi.org/10.1016/j.stem.2017.02.009.
37. Griffith JF. Age-Related Changes in the Bone Marrow. Curr Radiol Rep. 2017 Jun 1;5(6). https://doi.org/10.1007/s40134-017-0218-8.
38. Yanes RE, Gustafson CE, Weyand CM, Goronzy JJ. Lymphocyte generation and population homeostasis throughout life. Semin Hematol. 2017 Jan 1;54(1):33–8. https://doi.org/10.1053/j.seminhematol.2016.10.003.
39. Ma S, Wang C, Mao X, Hao Y. R Cells dysfunction associated with aging and autoimmune disease. Front Immunol. 2019 Feb 27;10(FEB):422305. https://doi.org/10.3389/fimmu.2019.00318.
40. Gohazrua M, Butler K, Ambrosi TH, Murphy MP, Chan CKF. Aging of Skeletal Stem Cells. 2022; 4(2), e220006. https://doi.org/10.20900/agmr20220006.
41. Yanes RE, Gustafson CE, Weyand CM, Goronzy JJ. Lymphocyte generation and population homeostasis throughout life. Semin Hematol. 2017 Jan 1;54(1):33–8. https://doi.org/10.1053/j.seminhematol.2016.10.003.
42. Kaiser FMP, Janowska I, Menafra R, de Gier M, Korzhenevich J, Pico-Knijnenburg I, et al. IL-7 receptor signaling drives human B-cell progenitor differentiation and expansion. Blood. 2023 Sep 28;142(13):1113–30. https://doi.org/10.1182/blood.2023019721.
43. Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 2011 Aug; 4118(5):1294–304. https://doi.org/10.1182/blood-2011-01-330530.
44. Rubtsov A V., Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, et al. Toll-like receptor 7 (TLR7)–driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood. 2011 Aug;118(5):1305–15. https://dx.doi.org/10.1182/blood-2011-01-331462.
45. Martorana A, Balistreri CR, Bulati M, Buffa S, Azzarello DM, Camarda C, et al. Double negative (CD19+IgG+IgD−CD27−) B lymphocytes: A new insight from telomerase in healthy elderly, in centenarian offspring and in Alzheimer’s disease patients. Immunol Lett. 2014 Nov 1;162(1):303–9. https://doi.org/10.1016/j.imlet.2014.06.003.
46. Rezzani R, Franco C, Hardeland R, Rodella LF. Thymus-Pineal Gland Axis: Revisiting Its Role in Human Life and Ageing. International Journal of Molecular Sciences. 2020 Nov 21(22):8806. https://doi.org/10.3390/ijms21228806.
47. Liang Z, Dong X, Zhang Z, Zhang Q, Zhao Y. Age‐related thymic involution: Mechanisms and functional impact. Aging Cell. 2022 Aug 21(8):e13671. https://doi.org/10.1111/acel.13671.
48. Chidgey A, Dudakov J, Seach N, Boyd R. Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol. 2007 Oct 1;19(5):331–40. https://doi.org/10.1016/j.smim.2007.10.006.
49. Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 2009 Jul 1;30(7):374–81. https://doi.org/10.1016/j.it.2009.05.001.
50. Poulin JF, Viswanathan MN, Harris JM, Komanduri K V., Wieder E, Ringuette N, et al. Direct Evidence for Thymic Function in Adult Humans. Journal of Experimental Medicine. 1999 Aug;190(4):479–86. https://doi.org/10.1084/jem.190.4.479.
51. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, et al. The Influence of Age on T Cell Generation and TCR Diversity. The Journal of Immunology. 2005 Jun 1;174(11):7446–52. https://doi.org/10.4049/jimmunol.174.11.7446.
52. Guo L, Liu X, Su X. The role of TEMRA cell-mediated immune senescence in the development and treatment of HIV disease. Front Immunol. 2023 Oct 12;14:1284293. https://doi.org/10.3389/fimmu.2023.1284293.
53. Pangrazzi L, Reidla J, Carmona Arana JA, Naismith E, Miggitsch C, Meryk A, et al. CD28 and CD57 define four populations with distinct phenotypic properties within human CD8+ T cells. Eur J Immunol. 2019 Mar 1;50(3):363. https://doi.org/10.1002/eji.201948362.
54. Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, et al. Age related human T cell subset evolution and senescence. Immunity and Ageing. 2019 Sep 11;16(1):1–7. https://doi.org/10.1186/s12979-019-0165-8.
55. Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nature Medicine. 2017 Jan 6;23(1):18–27. https://doi.org/10.1038/nm.4241.
56. Jain A, Sturmlechner I, Weyand CM, Goronzy JJ. Heterogeneity of memory T cells in aging. Front Immunol. 2023 Aug 18;14:1250916. https://doi.org/10.3389/fimmu.2023.1250916.
57. Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, et al. Age related human T cell subset evolution and senescence. Immunity and Ageing. 2019 Sep 11;16(1):1–7. https://doi.org/10.1186/s12979-019-0165-8.
58. Kared H, Martelli S, Ng TP, Pender SLF, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016 Apr 1;65(4):441. https://doi.org/10.1007/s00262-016-1803-z.
59. Weng N ping, Akbar AN, Goronzy J. CD28− T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009 Jul;30(7):306. https://doi.org/10.1016/j.it.2009.03.013.
60. Liu X, Si F, Bagley D, Ma F, Zhang Y, Tao Y, et al. Blockades of effector T cell senescence and exhaustion synergistically enhance antitumor immunity and immunotherapy. J Immunother Cancer. 2022 Oct 3;10(10):e005020. https://doi.org/10.1136/jitc-2022-005020.
61. Dey M, Huff WX, Kwon JH, Henriquez M, Fetcko K. The Evolving Role of CD8+CD28− Immunosenescent T Cells in Cancer Immunology. International Journal of Molecular Sciences. 2019 Jun 8;20(11):2810. https://doi.org/10.3390/ijms20112810.
62. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence and stemness in the tumor microenvironment. Curr Opin Immunol. 2013 Apr;25(2):214. https://doi.org/10.1016/j.coi.2012.12.003.
63. Mondal AM, Horikawa I, Pine SR, Fujita K, Morgan KM, Vera E, et al. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest. 2013 Dec 21;23(12):5247–57. https://doi.org/10.1172/JCI70355.
64. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, et al. Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8(4):439. https://doi.org/10.1111/j.1474-9726.2009.00489.x.
65. Kim YY, Um JH, Shin DJ, Jeong DJ, Hong Y Bin, Yun J. p53-mediated regulation of mitochondrial dynamics plays a pivotal role in the senescence of various normal cells as well as cancer cells. FASEB Journal. 2021 Feb 1;35(2). https://doi.org/10.1096/fj.202002007R.
66. Olshansky SJ, Willcox BJ, Demetrius L, Beltrán-Sánchez H. Implausibility of radical life extension in humans in the twenty-first century. Nature Aging. 2024 Oct 7;4(11):1635–42. https://doi.org/10.1038/s43587-024-00702-3.
67. Zuroff L, Rezk A, Shinoda K, Espinoza DA, Elyahu Y, Zhang B, et al. Immune aging in multiple sclerosis is characterized by abnormal CD4 T cell activation and increased frequencies of cytotoxic CD4 T cells with advancing age. EBioMedicine. 2022 Aug 1;82:104179. https://doi.org/10.1016/j.ebiom.2022.104179.
68. de Punder K, Heim C, Wadhwa PD, Entringer S. Stress and immunosenescence: the role of telomerase. Psychoneuroendocrinology. 2018 Mar 1;101:87. https://doi.org/10.1016/j.psyneuen.2018.10.019.
69. Boraschi D, Aguado MT, Dutel C, Goronzy J, Louis J, Grubeck-Loebenstein B, et al. The Gracefully Aging Immune System. Sci Transl Med. 2013 May 15;5(185). https://doi.org/10.1126/scitranslmed.3005624.
70. Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduction and Targeted Therapy. 2023 May 13;8(1):1–16. https://doi.org/10.1038/s41392-023-01451-2.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista de la Facultad de Ciencias Médicas. Universidad Nacional de Rosario.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.